
4 Canonical Quantization

We will begin now the discussion of our main subject of interest: the role of quan-
tum mechanical fluctuations in systems with infintely many degrees of freedom.
We will begin with a brief overview of quantum mechanics of a single particle.

4.1 Elementary Quantum Mechanics

Elementary Quantum Mechanics describes the quantum dynamics of systems
with a finite number of degrees of freedom. Two key ingredients are involved
in the standard procedure for quantizing a classical system. Let L(q, q̇) be the
Lagrangian of an abstract dynamical system described by the generalized coor-
dinate q. In chapter two, we recalled that the canonical formalism of Classical
Mechanics is based on the concept of canonical pairs of dynamical variables. So,
the canonical coordinate q has for partner the canonical momentum p:

p =
∂L

∂q̇
(1)

In this approach, the dynamics of the system is governed by the classical Hamil-
tonian

H(q, p) = pq̇ − L(q, q̇) (2)

which is the Legendre transform of the Lagrangian. In the canonical (Hamilto-
nian) formalism the equations of motion are just Hamilton’s Equations,

ṗ = −∂H

∂q
q̇ =

∂H

∂p
(3)

The dynamical state of the system is defined by the values of the canonical
coordinates and momenta at any given time t. As a result of these definitions,
the coordinates and momenta satisfy a set of Poisson Bracket relations

{q, p}PB = 1 {q, q}PB = {p, p}PB = 0 (4)

where

{A, B}PB ≡ ∂A

∂q

∂B

∂p
− ∂A

∂p

∂B

∂q
(5)

In Quantum Mechanics, the primitive (or fundamental) notion is the concept
of a physical state. A physical state of a system is a represented by a vector in
an abstract vector space, which is called the Hilbert space H of quantum states.
The space H is a vector space in the sense that if two vectors |Ψ〉 ∈ H and
|Φ〉 ∈ H represent physical states, then the linear superposition |aΨ + bΦ〉 =
a|Ψ〉+b|Φ〉, where a and b are two arbitrary complex numbers, also represents a
physical state and thus it is an element of the Hilbert space i.e., |aΨ+bΦ〉 ∈ H.
Thus, the Superposition Principle is an axiom of Quantum Mechanics.

In Quantum Mechanics, the dynamical variables, i.e., q̂, p̂, H , etc. , are
represented by operators which act linearly on the Hilbert space of states. (In
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this sense, Quantum Mechanics is linear, even though the observables obey non-
linear equations of motion.) Let us denote by Â an arbitrary operator acting
on H. The result of acting on the state |Ψ〉 ∈ H with the operator Â, i.e., a
measurement, is another state |Φ〉 ∈ H,

Â|Ψ〉 = |Φ〉 (6)

The Hilbert space H is endowed with an inner product. An inner product is an
operation which assigns a complex number 〈Φ|Ψ〉 to a pair of states |Φ〉 ∈ H
and |Ψ〉 ∈ H.

Since H is a vector space, there exists a set of linearly independent states
{|λ〉}, called a basis, which spans the entire Hilbert space. Thus, an arbitrary
state |Ψ〉 has the expansion

|Ψ〉 =
∑

λ

Ψλ |λ〉 (7)

which is unique for a fixed set of basis states. The basis states can be chose to
be orthonormal with respect to the inner product, i.e.,

〈λ|µ〉 = δλµ (8)

In general if |Ψ〉 and |Φ〉 are normalized states

〈Ψ|Ψ〉 = 〈Φ|Φ〉 = 1 (9)

the action of Â on |Ψ〉 is merely proportional to |Φ〉

Â|Ψ〉 = α|Φ〉 (10)

The coefficient α is a complex number which depends on the pair of states and
on Â. This coefficient is the matrix element of Â between the state |Ψ〉 and |Φ〉,
which we write with the notation

α = 〈Φ|Â|Ψ〉 (11)

Operators which act on a Hilbert space do not generally commute with
each other. One of the axioms of Quantum Mechanics is the Correspondence

Principle which states that the classical limit, ~ → 0, the operators should
become numbers, i. e. they commute in the classical limit.

The procedure of canonical quantization consists in demanding that to the
classical canonical pair (q, p), which satisfies the Poisson Bracket {q, p}PB = 1,
we associate a pair of operators q̂ and p̂, both acting on the Hilbert space of
states H, which are required to obey the canonical commutation relations

[q̂, p̂] = i~ [q̂, q̂] = [p̂, p̂] = 0 (12)

where [Â, B̂] is the commutator of the operators Â and B̂,

[Â, B̂] = ÂB̂ − B̂Â (13)

2



In particular, two operators that do not commute with each other cannot be
diagonalized simultaneously. Hence it is not possible to measure both observ-
ables with arbitrary precision in the same physical state. This is the statement
of the Uncertainty Principle.

To the classical Hamiltonian H(q, p), which is a function of the variables
q and p, we assign an operator Ĥ(q̂, p̂) which is obtained by replacing the dy-
namical variables with the corresponding operators. Other classical dynamical
quantities are similarly associated with quantum operators. All operators asso-
ciated with classical physical quantities are Hermitian operators relative to the
inner product defined in the Hilbert space H. Namely, if Â is an operator and
Â† is the adjoint of Â

〈Ψ|Â†|Φ〉 ≡ 〈Φ|ÂΨ〉∗ (14)

then Â is Hermitian if Â = Â†.
The quantum mechanical state of the system at time t, |Ψ(t)〉, is the solution

of the Schrödinger Equation

i~
∂

∂t
|Φ(t)〉 = Ĥ(q̂, p̂) |Ψ(t)〉 (15)

The state |Ψ(t)〉 is uniquely determined by the initial state |Ψ(0)〉.
It is always possible to choose a basis in which a particular operator is

diagonal. For instance, if the operator is the canonical coordinate q̂, the basis
states are labelled by q and are its eigenstates, i.e.,

q̂|q〉 = q |q〉 (16)

The state vector |Ψ〉 can be expanded in an arbitrary basis. If the basis of states
is {|q〉} , the expansion is

|Ψ〉 =
∑

q

Ψ(q) |q〉 =

∫ +∞

−∞

dq Ψ(q) |q〉 (17)

The coefficients Ψ(q) of this expansion

Ψ(q) = 〈q|Ψ〉 (18)

are (the values of) the wave function associated with the state |Ψ〉 in the co-

ordinate representation. Here we have used that the states |q〉 are orthonormal

and complete, i. e.

〈q|q′〉 = δ(q − q′) Î =

∫

dq |q〉〈q| (19)

Since the canonical momentum p̂ does not commute with q̂, it is not diagonal
in this representation. In fact, just as in Classical Mechanics, the momentum
operator p̂ is the generator of infinitesimal displacements. Consider the states
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|q〉 and exp(− i
~
ap̂) |q〉. It is easy to prove that the latter is the state |q + a〉

since

q̂ exp(
−i

~
ap̂) |q〉 ≡ q̂

∞
∑

n=0

1

n!

(−ia

~

)n

p̂n |q〉 (20)

Using the commutation relation [q̂, p̂] = i~ is easy to show that

[q̂, p̂n] = i~np̂n−1 (21)

Hence, we can write

q̂ exp

(

− i

~
ap̂

)

|q〉 = (q + a) exp

(

− i

~
ap̂

)

|q〉 (22)

Thus,

exp

(

− i

~
ap̂

)

|q〉 = |q + a〉 (23)

We can now use this property to compute the matrix element

〈q| exp

(

i

~
ap̂

)

|Ψ〉 ≡ Ψ(q + a) (24)

For a infinitesimally small, it can be approximated by

Ψ(q + a) ≈ Ψ(q) +
i

~
a〈q|p̂|Ψ〉 + . . . (25)

We find that the matrix element for p̂ has to satisfy

〈q|p̂|Ψ〉 =
~

i
lim
a→0

Ψ(q + a) − Ψ(q)

a
(26)

Thus, the operator p̂ is represented by a differential operator

〈q|p̂|Ψ〉 ≡ ~

i

∂

∂q
Ψ(q) =

~

i

∂

∂q
〈q|Ψ〉 (27)

It is easy to check that the coordinate representation of the operator

p̂ =
~

i

∂

∂q
(28)

and the coordinate operator q̂ satisfy the commutation relation [q̂, p̂] = i~.

4.2 Canonical Quantization in Field Theory

We will now apply the axioms of Quantum Mechanics to a Classical Field The-
ory. The result will be a Quantum Field Theory. For the sake of simplicity
we will consider first the case of a scalar field φ(x). We have seen before that,
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given a Lagrangian density L(φ, ∂µφ), the Hamiltonian can be found once the
canonical momentum Π(x) is defined, i.e.,

Π(x) =
∂L

δ∂0φ(x)
(29)

On a given time surface x0, the classical Hamiltonian is

H =

∫

d3x [Π(~x, x0)∂0φ(~x, x0) − L(φ, ∂µφ)] (30)

We quantize this theory by assigning to each dynamical variable of the Classical
theory, a Hermitian operator which acts on the Hilbert space of the quantum
states of the system. Thus, the field φ(~x) and the canonical momentum Π(~x)
are operators which act on a Hilbert space. These operators obey canonical

commutation relations

[φ(~x), Π(~y)] = i~δ(~x − ~y) (31)

In the field representation, the Hilbert space is the vector space of wave functions
Ψ which are functionals of the field configurations {φ(~x)}, i.e.,

Ψ = Ψ({φ(~x)}) ≡ 〈{φ(~x)}|Ψ〉 (32)

In this representation, the field is a diagonal operator

〈{φ}|φ̂(~x)|Ψ〉 ≡ φ(~x) 〈{φ(~x)}|Ψ〉 = φ(~x) Ψ({φ}) (33)

The canonical momentum Π̂(~x) is not diagonal in this representation but it acts
like a functional differential operator, i.e.,

〈{φ}|Π̂(~x)|Ψ〉 ≡ ~

i

δ

δφ(~x)
Ψ({φ}) (34)

What we just described is the Schrödinger Picture of QFT. In this picture, as
usual, the operators are time-independent but the states are time-dependent and
satisfy the Schrödinger Equation

i~
∂

∂t
Ψ({φ}, t) = ĤΨ({φ}, t). (35)

For the particular case of a scalar field φ with the classical Lagrangian L

L =
1

2
(∂µφ)2 − V (φ) (36)

the quantum mechanical Hamiltonian operator Ĥ is

Ĥ =

∫

d3x

{

1

2
Π̂2(~x) +

1

2
(~▽φ̂(~x))2 + V (~φ(~x))

}

(37)

The stationary states of the system are the eigenstates of Ĥ . While it is
possible to proceed further with the Schrödinger picture, the manipulation of
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wave functionals becomes very cumbersome rather quickly. For this reason an
alternative approach has been devised. This is the Heisenberg Picture.

In the Schrödinger Picture the information on the time evolution of the
system is encoded in the time dependence of the states. In contrast, in the
Heisenberg Picture the operators are time dependent while the states are not.
The operators of the Heisenberg Picture obey quantum mechanical equations of
motion.

Let Â be some operator which acts on the Hilbert space of states. Let us
define ÂH(x0), the Heisenberg operator at time x0, by

ÂH(x0) = e
i
~

Ĥx0 Â e−
i
~

Ĥx0 (38)

for a system with a time-independent Hamiltonian Ĥ. It is straightforward to
check that ÂH(x0) obeys the equation of motion

i~∂0ÂH(x0) = [ÂH(x0), Ĥ ] (39)

Notice that in the classical limit, the dynamical variable A(x0) obeys the clas-
sical equation of motion

∂0A(x0) = {A(x0), H}PB (40)

where it is assumed that all the time dependence in A comes from the time
dependence of the coordinates and momenta.

In the Heisenberg picture both φ̂(~x, x0) and Π̂(~x, x0) are time dependent
operators which obey the equations of motion

i~∂0φ̂ =
[

φ̂, Ĥ
]

(41)

and
i~∂0Π̂ = [Π̂, Ĥ] (42)

The Heisenberg field operators φ̂ and Π̂ (I will omit the subindex “H” from now
on) obey equal-time commutation relations

[

φ̂(~x, x0), Π̂(~y, x0)
]

= i~δ(~x − ~y) (43)

4.3 Quantized elastic waves in a solid: Phonons

Let us consider the problem of the quantum dynamics of an array of atoms. We
will see below that this problem is closely related to the problem of quantization
of a free scalar field. We will consider the simple case of a one-dimensional
array of atoms, a chain. Each atom has mass M and their classical equilibrium
positions are the regularly spaced lattice sites x0

n = na0, (n = 1, . . . , n) where a0

is the lattice spacing. I will assume that we have a system with N atoms and,
therefore that the length L of the chain is L = Na0. To simplify matters, I will
assume that the chain is actually a ring and, thus, the N + 1 − st atom is the
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n−1 n n+1 n+2

a u n+1

Figure 1: A model of an elastic one-dimensional solid.

same as the 1st atom. The dynamics of this system can be specified in terms of
a set of coordinates {un} which represent the position of each atom relative to
their classical equilibrium positions x0

n i.e., the actual position xn of the nth

atom is xn = x0
n + un.

The Lagrangian of the system is a function of the coordinates {un}, and of
their time derivatives {u̇n}. In general the Lagrangian L it will be the difference
of the kinetic energy of the atoms minus the potential energy, i.e.,

L({un}, {u̇n}) =

N
2

∑

n=−N
2

+1

M

2

(

dun

dt

)2

− V ({un}) (44)

We will be interested in the study of the small oscillations of the system. Thus,
the potential will have a minimum at the classical equilibrium positions {un = 0}
(which we will assume to be unique). For small oscillations V ({un}) can be
expanded in powers

V ({un}) =

N
2

∑

n=−N
2

+1

[
D

2
(un+1 − un)2 +

K

2
u2

n + . . .] (45)

Here D is an elastic constant (i.e., spring constant!) which represents the
restoring forces that keep the crystal together. The constant K is a measure of
the strength of an external potential which favors the placement of the atoms at
their classical equilibrium positions. For an isolated system, K = 0 but D 6= 0.
This must be the case since an isolated system must be translationally invariant
and, therefore, V must not change under a constant, uniform, displacement of
all the atoms by some amount a, un → un + a. The term proportional to u2

n

breaks this symmetry, although it does not spoil the symmetry n → n + m.
Let us now proceed to study the quantum mechanics of this system. Each

atom has a coordinate un(t) and a canonical momentum pn(t) which is defined
in the usual way

pn(t) =
∂L

∂u̇n(T )
= Mu̇n(t) (46)
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The quantum Hamiltonian for a chain with an even number of sites N is

H({ûn}, {p̂n}) =

N
2

∑

n=−N
2

+1

[

p̂2
n

2M
+

D

2
(ûn+1 − ûn)2 +

K

2
û2

n + · · ·
]

(47)

where the coordinates and momenta obey the commutation relations

[ûn, p̂m] = i~δn,m (48)

and
[ûn, ûm] = [p̂n, p̂m] = 0. (49)

For this simple system, the Hilbert space can be identified as the tensor product
of the Hilbert spaces of each atom. Thus, if |Ψ〉n denotes an aribtrary state in
the Hilbert space of the nth atom, the states of the chain |Ψ〉 can be written in
the form

|Ψ〉 = |Ψ〉1 ⊗ · · · ⊗ |Ψ〉n ⊗ · · · ⊗ |Ψ〉N ≡ |Ψ1, . . . , ΨN〉 (50)

For instance, a set of basis states can be constructed by using the coordinate
representation. Thus, if the state |un〉 is an eigenstate of ûn with eigenvalue un

ûn|un〉 = un|un〉 (51)

we can write a set of basis states

|u1, . . . , uN〉 (52)

of the form
|u1, . . . , uN〉 = |u1〉 ⊗ · · · ⊗ |uN〉 (53)

In this basis, the wave functions are

Ψ(u1, . . . , uN) = 〈u1, . . . , uN |Ψ〉 =
N
∏

n=1

〈un|Ψn〉 =
N
∏

n=1

Ψn(un) (54)

By inspecting the Hamiltonian it is easy to recognize that it represents a set of N

coupled harmonic oscillators. Since the system is periodic and invariant under
lattice shifts n → n + m (m integer), it is natural to expand the coordinates ûn

in a Fourier series

ûn =
1

N

∑

k

ũk eikn (55)

where k is a label (lattice momentum) and ũk are the Fourier components of
ûn. The fact that we have imposed periodic boundary conditions (PBC’s) (i.e.,
the chain in a ring) means that

ûn = ûn+N (56)
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This relation can hold only if the labels k satisfy

eikN = 1 (57)

This condition restricts the values of k to the discrete set

km = 2π
m

N
m = −N

2
+ 1, . . . ,

N

2
(58)

where I have set the lattice constant to unity, a0 = 1. Thus the expansion of ûn

is

ûn =
1

N

N
2

∑

m=−N
2

+1

ũkm
eikmn (59)

The spacing ∆k between two consecutive values of k, km and km+1, is

∆k = km+1 − km =
2π

N
(60)

which vanishes as N → ∞. In particular, the momentum label kn runs over the
range (−N

2 + 1)2π
N ≤ km ≤ N

2 . Thus, in the limit N → ∞ the momenta fill up
densly the interval (−π, π].

We then conclude that, in the thermodynamic limit N → ∞, the momentum
sum converges to the integral

ûn = lim
N→∞

1

N

N
2

∑

m=−N
2

+1

ũkm
eikmn =

∫ π

−π

dk

2π
ũ(k) eikn (61)

Since ûn is a real Hermitian operator, the Fourier components ũ(k) must satisfy

ũ†(k) = ũ(−k) (62)

The Fourier component ũ(k) can be written as a linear combination of operators
ûn of the form

ũ(k) =

N
2

∑

n=−N
2

+1

ûn e−ikn (63)

where I have used the periodic Dirac delta function, defined by

N
2

∑

n=−N
2

+1

ei(k−q)n =

+∞
∑

m=−∞

2πδ(k − q + 2πm) ≡ 2πδP (k − q) (64)

which is defined in the thermodynamic limit.
The momentum operators p̂n can also be expanded in Fourier series. Their

expansions are

p̂n =

∫ π

−π

dk

2π
p̃(k) eikn p̃(k) =

N
2

∑

n=− N
2+1

e−ikn p̂n (65)
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They satisfy
p̃†(k) = p̃(−k) (66)

The transformation (ûn, p̂n) → (ũ(k), p̃(k)) is a canonical transformation. In-
deed, the Fourier amplitudes ũ(k) and p̃(k) obey the commutation relations

[ũ(k), p̃(k′)] =

N
2

∑

n,n′=−N
2

+1

e−i(kn+k′n′) [ũn, p̃n′ ]

= i~

N
2

∑

n=−N
2

+1

e−i(k+k′)n

(67)

Hence, we find
[ũ(k), p̃(k′)] = i~ 2π δP (k + k′) (68)

and
[ũ(k), p̃(k′)] = [p̃(k), p̃(k′)] = 0 (69)

We can now write H in terms of the Fourier components ũ(k) and p̃(k). We
find

H =

∫ π

−π

dk

2π
[

1

2M
p̃†(k)p̃(k) +

M

2
ω2(k)ũ†(k)ũ(k)] (70)

where ω2(k) is

ω2(k) =
K

M
+

4D

M
sin2(

k

2
) (71)

Thus, the system decouples into its normal modes. The frequency ω(k) is shown
in the figure 2. It is instructive to study the long-wave length limit, k → 0. For
K = 0 (i.e., no external potential), ω(k) goes to zero linearly as k → 0,

ω(k) ≈
√

D

M
|k| (K = 0) (72)

However, for non-zero K, we get ( again in the limit k → 0)

ω(k) ≈
√

K

M
+

D

M
k2 (73)

If we now restore a lattice constant a0 6= 1, k = k̃a0 we can write ω(k̃) in the
form

ω(k̃) = vs

√

m̄2v2
s + k̃2 (74)

where vs is the speed of propagation of sound in the chain,

vs =

√

D

M
a0 ≡

√

Da0

ρ̄
(75)
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ω(k)

K/M K=0
K=0

k
π

Figure 2: The dispersion relation.

where ρ̄ is the density. The “mass” m̄ is

m̄ =
ω0

v2
s

(76)

where ω0 =
√

K
M . Thus, the waves which propagate on this chain behave like

“relativistic” particles with mass m̄ and “speed of light” vs. Indeed, the long
wavelength limit (k → 0) the discrete Lagrangian of eq (4.3.1) can be written
in the form of an integral

L = a0

∑

n

1

2

(

M

a0

) (

∂un

∂t

)2

− a0

2

∑

n

Da0

(

un+1 − un

a0

)2

− a0

2

∑

n

K

a0
u2

n (77)

Thus, as a0 → 0 and N → ∞, the sums converge to an integral

L = ρ̄

∫ ℓ/2

− ℓ
2

dx {1

2

(

∂u

∂t

)2

− 1

2
v2

s

(

∂u

∂x

)2

− 1

2
m̄2v4

su2(x)} (78)

for a system of total length ℓ. Apart from the overall factor of ρ̄, the mass
density, we see that the Lagrangian for the linear chain is, in the long wavelength
limit (or continuum limit) the same as the Lagrangian for the Klein-Gordon
(KG) field u(x) in one-space dimension. The last term of this Lagrangian is
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precisely the mass term for the Lagrangian of the KG field. This explains the
choice of the symbol m̄. Indeed, upon the change of variables

x0 = vst x1 = x (79)

and by defining the rescaled field

ϕ =
√

ρ̄vsu (80)

we see immediately that the Lagrangian density L is

L =
1

2
(∂0ϕ)

2 − 1

2
(∂1ϕ)

2 − 1

2
m̄2v2

sϕ2 (81)

which is the Lagrangian density for a free scalar field in one spacial dimension.
Returning to the quantum theory, we seek to find the stationary states of

the normal-mode Hamiltonian. Let â†(k) and â(k) be the operators defined by

â†(k) =
1

√

2M~ω(k)

(

Mω(k)ũ†(k) − ip̃†(k)
)

â(k) =
1

√

2M~ω(k)
(Mω(k)ũ(k) + ip̃(k))

(82)

These operators satisfy the commutation relations

[â(k), â(k′)] =
[

â†(k), â†(k′)
]

= 0
[

â(k), â†(k′)
]

= 2πδP (k + k′)

(83)

Up to normalization constants, the operators â†(k) and â(k) obey the algebra
of creation and anihilation operators.

In terms of the creation and anihilation operators, the momentum space
oscillator operators ũ(k) and p̃(k) are

ũ(k) =

√

~

2Mω(k)

(

â(k) + â†(−k)
)

p̃(k) =
√

2M~ω(k)
1

2i

(

â(k) − â†(−k)
)

(84)

Thus, the coordinate space operators ûn and p̂n have the Fourier expansions

ûn =

∫ π

−π

dk

2π

√

~

2Mω(k)

(

â(k) eikn + â†(k) e−ikn
)

p̂n =

∫ π

−π

dk

2π

√

2M~ω(k)
1

2i

(

â(k) eikn − â†(k) e−ikn
)

(85)
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The normal-mode Hamiltonian has a very simple form in terms of the creation
and anihilation operators

H =

∫ π

−π

dk

2π

~ω(k)

2

(

â†(k)â(k) + â(k)â†(k)
)

(86)

It is customary to write H in such a way that the creation operators always
appear to the left of anihilation operators. This procedure is called normal

ordering. Given an arbitrary operator Â, we will denote by : Â : the normal

ordered operator. We can see by inspection that Ĥ can be written as a sum of
two terms: a normal ordered operator :Ĥ : and a complex number. The complex
number results from using the commutation relations. Indeed, by operating on
the last term of eq (4.3.39), we get

â(k)â†(k) = [â(k), â†(k)] + â†(k)â(k) (87)

The commutator [â(k), â†(k)] is the divergent quantity

[â(k), â†(k)] = lim
k′→k

2πδP (k − k
′

) = lim
k′

→k
2π

+∞
∑

m=∞

δ(k − k
′

+ 2πm)

= lim
k′

→k

N
2

∑

n=−N
2

+1

ei(k−k
′

)n = N

(88)

which diverges in the thermodynamic limit, N → ∞.
Using these results, we can write Ĥ in the form

Ĥ =:Ĥ : +E0 (89)

where :Ĥ : is the normal-ordered Hamiltonian

:Ĥ :=

∫ π

−π

dk

2π
~ω(k) â†(k)â(k) (90)

and the real number E0 is given by

E0 = N

∫ π

−π

dk

2π

~ω(k)

2
(91)

We will see below that E0 is the ground state energy of this system. The linear
divergence of E0 (as N → ∞) is natural since the ground state energy has to
be an extensive quantity, i.e., it scales like the length (volume) of the chain
(system).

We are now ready to construct the spectrum of eigenstates of this system.

1. Ground state:
Let |0〉 be the state which is anihilated by all the operators â(k),

â(k)|0〉 = 0 (92)
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This state is an eigenstate with eigenvalue E0 since

Ĥ |0〉 =:Ĥ : |0〉 + E0|0〉 = E0|0〉 (93)

where we have used the fact that |0〉 is anihilated by the normal-ordered
Hamilitonian :Ĥ :. This is the ground state of the system since the energy
of all other states is higher. Thus, E0 is the energy of the ground state.
Notice that E0 is the sum of the zero-point energy of all the oscillators.

The wave function for the ground state can be constructed quite easily.
Let Ψ0 ({û(k)}) = 〈{û(k)}|0〉 be the wave function of the ground state.
The condition that |0〉 be anihilated by all the operators â(k) means that
the matrix element 〈{ũ(k)}|â(k)|0〉 has to vanish. The definition of â(k)
yields the condition

0 = Mω(k) 〈{ũ(k)}|ũ(k)|0〉 + i〈{ũ(k)}|p̃(k)|0〉 (94)

The commutation relation

[ũ(k), p̃(k
′

)] = i~ 2π δP (k + k
′

) (95)

implies that, in the coordinate representation p̃(k) must bet the functional
differential operator

〈{ũ(k)|p̃(k)|0〉 =
~

i
2π

δ

δũ(k)
Ψ0 ({û(k)}) (96)

Thus, the wave functional Ψ0 must obey the differential equation

Mω(k) û∗(k) Ψ0 ({û(k)}) + 2π~
δ

δũ(k)
Ψ0 ({û(k)}) = 0 (97)

for each value of k ∈ [−π, π]. Clearly Ψ0 has the form of a product

Ψ0 ({û(k)}) =
∏

k

Ψ0,k (ũ(k)) (98)

where the wave function Ψ0,k (ũ(k)) satisfies

Mω(k)ũ∗(k)Ψ0,k (u(k)) + 2π~
∂

∂u(k)
Ψ0,k (u(k)) = 0 (99)

The solution of this equation is the ground state wave function for the
k-th oscillator

Ψ0,k (u(k)) = N (k) exp

(

−
(

Mω(k)

2π~

) |ũ|2(k)

2

)

(100)

where N (k) is a normalization factor. The total wave function for the
ground state is

Ψ0({ũ(k)}) = N exp[−
∫ π

−π

dk

2π

(

Mω(k)

2π~

) |ũ|2(k)

2
] (101)

where N is another normalization constant. Notice that this wave function
is a functional of the oscillator variables {ũ(k)}.
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2. One-Particle States:
Let the ket |1k〉 denote the one-particle state

|1k〉 ≡ â†(k)|0〉 (102)

This state is an eigenstate of Ĥ with eigenvalue E1(k)

Ĥ|1k〉 =:Ĥ : |1k〉 + E0|1k〉 (103)

The normal-ordered term now does give a contribution since

:Ĥ : |1k〉 =

(
∫ π

−π

dk′

2π
~ω(k′) â†(k′)â(k′)

)

â†(k)|0〉

=

∫ π

−π

dk′

2π
~ω(k

′

){â†(k′)[â(k′), â†(k)]|0〉 + â†(k′)â†(k)a(k′)|0〉}

(104)

The result is

:Ĥ : |1k〉 =

∫ π

−π

dk′

2π
~ω(k′) â†(k′) 2πδP (k′ − k) |0〉 (105)

since the last term vanishes. Hence

:Ĥ : |1k〉 = ~ω(k) â†(k) |0〉 ≡ ~ω(k) |1k〉 (106)

Therefore, we find
Ĥ |1k〉 = (~ω(k) + E0) |1k〉 (107)

Let ε(k) be the excitation energy

ε(k) ≡ E1(k) − E0(k) = ~ω(k) (108)

Thus the one-particle states represent quanta with energy ~ω(k) above
that of the ground state.

3. Many Particle States:
If we define the occupation number operator n̂(k) by

n̂(k) = â†(k)a(k) (109)

i.e., the quantum number of the k-th oscillator, we see that the most
general eigenstate is labelled by the set of oscillator quantum numbers
{n(k)}. Thus, the state |{n(k)}〉 defined by

|{n(k)}〉 =
∏

k

[

â†(k)
]n(k)

√

n(k)!
|0〉 (110)

has energy E[{n(k)}]

E[{n(k)}] =

∫ π

−π

dk

2π
n(k)~ω(k) + E0 (111)

It is clear that the excitations behave like free particles since the energies
are additive. These excitations are known as phonons. They are the
quantized fluctuations of the array of atoms.
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4.4 Quantization of the Free Scalar Field Theory.

We now return to the problem of quantizing a scalar field φ(x). In particular,
we will consider a free real scalar field φ whose Lagrangian density is

L =
1

2
(∂µφ)(∂µφ) − 1

2
m2φ2 (112)

This system can be studied using methods which are almost identical to the
ones we used in our discussion of the chain of atoms.

The quantum mechanical Hamiltonian Ĥ for a free real scalar field is

Ĥ =

∫

d3x

[

1

2
Π̂2(~x) +

1

2

(

~▽φ̂(~x)
)2

+
1

2
m2φ̂2(~x)

]

(113)

where φ̂ and Π̂ satisfy the equal-time commutation relations (in units with
~ = c = 1)

[φ̂(~x, x0), Π̂(~y, x0)] = iδ(~x − ~y) (114)

1. Equations of Motion:
In the Heisenberg representation, φ̂ and Π̂ are time dependent operators
while the states are time independent. The field operators obey the equa-
tions of motion

i∂0φ̂(~x, x0) = [φ̂(~x, x0), Ĥ ]

i∂0Π̂(~x, x0) = [Π̂(~x, x0), Ĥ ] (115)

These are operator equations. After some algebra, we get

∂0φ̂(~x, x0) = Π̂(~x, x0) (116)

∂0Π̂(~x, x0) = ▽2φ̂(~x, x0) − m2φ̂(~x, x0) (117)
(

� + m2
)

φ̂(x) = 0 (118)

Thus, the field operators φ̂(x) satisfy the Klein-Gordon equation.

2. Field Expansion:
Let us solve this equation by Fourier Transforms. Let us write φ̂(x) in the
form

φ̂(x) =

∫

d3k

(2π)3
φ̂(~k, x0) ei~k·~x (119)

where φ̂(~k, x0) are the Fourier amplitudes of φ̂(x). We now demand that

the φ̂(x) satisfies the KG equation we find that φ̂(~k, x0) should satisfy the
condition

∂2
0 φ̂(~k, x0) + (~k2 + m2)φ̂(~k, x0) = 0 (120)

Also, since φ̂(x) is a real Hermitian field, φ̂(~k, x0) must satisfy

φ̂†(~k, x0) = φ̂(−~k, x0) (121)
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The time dependence of φ̂(~k, x0) is trivial. Let us write φ̂(~k, x0) as the
sum of two terms

φ̂(~k, x0) = φ̂+(~k)eiω(~k)x0 + φ̂−(~k)e−iω(~k)x0 (122)

The operators φ̂+(~k) and φ̂
†
+(~k) are not independent since the reality

condition implies that

φ̂+(~k) = φ̂
†
−(−~k) φ̂

†
+(~k) = φ̂−(−~k) (123)

This expansion is a solution of the equations of motion if ω(~k) is given by

ω(~k) =

√

~k2 + m2 (124)

Let us define the operators â(~k) and its adjoint â†(~k) by

â(~k) = 2ω(~k)φ̂−(~k) â†(~k) = 2ω(~k)φ̂†
−(~k) (125)

The operators â†(~k) and â(~k) obey the (generalized) creation-anihilation
operator algebra

[â(~k), â†(~k′)] = (2π)32ω(~k) δ3(~k − ~k′) (126)

In terms of the operators â†(~k) and â(~k) field operator is

φ̂(x) =

∫

d3k

(2π)32ω(~k)

[

â(~k)e−iω(~k)x0+i~k·~x + â†(~k)eiω(~k)x0−i~k·~x
]

(127)

We have chosen to normalize the operators in such a way that the phase

space factor takes the Lorentz invariant form d3k

2ω(~k)
.

The canonical momentum also can be expanded in a similar way

Π̂(x) = −i

∫

d3k

(2π)32ω(k)
ω(k)[â(~k)e−iω(~k)x0+i~k·~x−â†(~k)eiω(~k)eiω(~k)x0−i~k·~x]

(128)
Notice that, in both expansions, there are terms with positive and neg-
ative frequency and that the terms with positive frequency have creation

operators â†(~k) while the terms with negative frequency have anihilation

operators â(~k). This observation motivates the notation

φ̂(x) = φ̂+(x) + φ̂−(x) (129)

where φ̂+ are the positive frequency terms and φ̂− are the negative fre-
quency terms. This decomposition will turn out to be very useful.
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3. Hamiltonian:
We will now follow the same approach that we used for the problem of
the linear chain and write the Hamiltonian in terms of the operators â(~k)

and â†(~k). The result is

H =

∫

d3k

(2π)32ω(~k)

ω(~k)

2

(

â(~k)â†(~k) + â†(~k)â(~k)
)

(130)

This Hamiltonian needs to be normal-ordered relative to some ground
state which we will now define.

4. Ground State:
Let |0〉 be state which is anihilated by all the operators â(~k), i.e.,

â(~k)|0〉 = 0 (131)

Relative to this state, that we will call the vacuum state, the Hamiltonian
can be written on the form

Ĥ =:Ĥ : +E0 (132)

where : Ĥ : is normal ordered relative to the state |0〉. In other words,
in : Ĥ : all the destruction operators appear the right of all the creation
operators. Therefore :Ĥ : anihilates the vacuum

:Ĥ : |0〉 = 0 (133)

The real number E0 is the ground state energy. In this case it is equal to

E0 =

∫

d3k
ω(~k)

2
δ(0) (134)

when δ(0) is the infared divergent number

δ(0) = lim
p→0

δ3(~p) = lim
p→0

∫

d3x

(2π)3
ei~p·~x =

V

(2π)3
(135)

where V is the (infinite) volume of space. Thus, E0 is extensive and can
be written as E0 = ε0V , where ε0 is the ground state energy density. We
find

ε0 =

∫

d3k

(2π)3
ω(~k)

2
≡ 1

2

∫

d3k

(2π)3

√

~k2 + m2 (136)

5. Divergence:

Eq. 136 is the sum of the zero-point energies of all the oscillators. This
quantity is formally divergent since the integral is dominated by the con-
tributions with large momentum or, what is the same, short distances.
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This is an ultraviolet divergence. It is divergent because the system has
an infinite number of degrees of freedom even if the volume is finite. We
will encounter other examples of similar divergencies in field theory. It is
important to keep in mind that they are not artifacts of our scheme but
that they result from the fact that the system is in continuous space-time
and thus it is infinitely large.

It is interesting to compare this issue in the phonon problem with the
scalar field theory. In both cases the ground state energy was found to
be extensive. Thus, the infrared divergence in E0 was expected in both
cases. However,the ultraviolet divergence that we found in the scalar field
theory is absent in the phonon problem. Indeed, the ground state energy
density ε0 for the linear chain with lattice spacing a is

ε0 =

∫ π
a

−π
a

dk

2π

~ω(k)

2
=

∫ π
a

−π
a

dk

2π

1

2

√

~2K

M
+

4D~2

M
sin2(

ka

2
) (137)

Thus integral is finite because the momentum integration is limited to
the range |k| ≤ π

a . Thus the largest momentum in the chain is π
a and it

is finite provided that the lattice spacing is not equal to zero. In other
words, the integral is cut off by the lattice spacing. However, the scalar
field theory that we are considering does not have a cut off and hence the
energy density blows up.

We can take two different points of view with respect to this problem.
One possibility is simply to say that the ground state energy is not a
physically observable quantity since any experiment will only yield infor-
mation on excitation energies and in this theory, they are finite. Thus,
we may simply redefine the zero of the energy by dropping this term off.
Normal ordering is then just the mathematical statement that all energies
are measured relative to that of the ground state. As far as free field
theory is concerned, this subtraction is sufficient since it makes the the-
ory finite without affecting any physically observable quantity. However,
once interactions are considered, divergencies will show up in the formal
computation of physical quantities. This procedure then requires further
subtractions. An alternative approach consists in introducing a regulator
or cut off. The theory is now finite but one is left with the task of proving
that the physics is independent of the cut off. This is the program of
the Renormalization group. Although it is not presently known if there
should be a fundamental cut off in these theories, i.e., if there is a more
fundamental description of Nature at short distances and high energies, it
is clear that if these theories are to be regarded as effective hydrodynamic

theories valid below some high energy scale, then a cut off is actually
natural.

6. Hilbert Space:
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We can construct the spectrum of states by inspection of the normal or-
dered Hamiltonian

:Ĥ :=

∫

d3k

(2π)32ω(~k)
ω(~k) â†(~k)â(~k) (138)

This Hamiltonian commutes with the total momentum ~P

~P =

∫

x0 fixed

d3x Π̂(~x, x0)~▽φ̂(~x, x0) (139)

which, up to operator ordering amibiguities, is the quantum mechanical
version of the classical linear momentum P j ,

P j =

∫

x0

d3x T 0j ≡
∫

x0

d3x Π(~x, x0) ▽j φ(~x, x0) (140)

In Fourier space ~P becomes

~P =

∫

d3k

(2π)32ω(~k)
~k â†(~k)â(~k) (141)

~P has an operator ordering ambiguity which we will fix below by normal
ordering. By inspection we see that ~P commutes with H .

: Ĥ : also commutes with the oscillator occupation number n̂(~k), defined
by

n̂(~k) ≡ â†(~k)â(~k) (142)

Since {n̂(~k)} and Ĥ commute with each other, we can use a complete set

of eigenstates of {n̂(~k)} to span the Hilbert space. Since we will regard the
excitations counted by n̂(k) as particles, this Hilbert space has an indefi-

nite number of particles and it is called Fock space. The states {|{n(~k)}〉},
defined by

|{n(~k}〉 =
∏

~k

N (~k)[â†(~k)]n(~k)|0〉 (143)

(with N (~k) normalization constants) are eigenstates of the operator n̂(~k)

n̂(~k)|{n(~k)} >= (2π)32ω(~k)n(~k)|{n(~k) > (144)

These states are the occupation number basis of the Fock space.

The total number operator N̂

N̂ ≡
∫

d3k

(2π)32ω(~k)
n̂(~k) (145)

commutes with the Hamiltonian Ĥ and it is diagonal in this basis i.e.,

N̂ |{n(~k)}〉 =

∫

d3k n(~k) |{n(~k)}〉 (146)
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The energy of these states is

Ĥ |{n(~k)}〉 =

[
∫

d3k n(~k)ω(~k) + E0

]

|{n(~k)}〉 (147)

Thus, the excitation energy ε({n(~k)}) of this state is
∫

d3k n(~k)ω(~k).

The operator ~P has an operator ordering ambiguity. It will be fixed
by requiring that the vacuum state |0〉 be translationally invariant, i.e.,

P̂ j |0〉 = 0. In terms of creation and anihilation operators we get

P̂ j =

∫

d3k

(2π)32ω(~k)
kj n̂(~k) (148)

Thus, P̂ j is diagonal in the basis |{n(~k)}〉 since

P̂ j |{n(~k)}〉 =

[
∫

d3k kjn(~k)

]

|{n(~k)}〉 (149)

The state with lowest energy, the vacuum state |0〉 has n(~k) = 0, for all
~k. Thus the vacuum state has zero momentum and it is translationally
invariant.

The state |~k〉, defined by

|~k〉 ≡ â†(~k)|0〉 (150)

have excitation energy ω(~k) and total momentum ~k. Thus, the states |~k〉
are particle-like excitations which have an energy dispersion curve

E =

√

~k2 + m2 (151)

which is characteristic of a relativisitc particle of momentum ~k and mass m.
Thus, the excitations of the ground state of this field theory are particle-
like. From our discussion we can see that these particles are free since
their energies and momenta are additive.

7. Causality:

The starting point of the quantization procedure was to impose equal-
time commutation relations among the canonical fields φ̂(x) and momenta
Π̂(x). In particular two field operators on different spacial locations com-

mute at equal times. But, do they commute at different times?

Let us calculate the commutator ∆(x − y)

i∆(x − y) = [φ̂(x), φ̂(y)] (152)
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where φ̂(x) and φ̂(y) are Heisenberg field operators for space-time points
x and y respectively. From the Fourier expansion of the fields we know
that the field operator can be split into a sum of two terms

φ̂(x) = φ̂+(x) + φ̂−(x) (153)

where φ̂+(φ̂−) contains only creation (anihilation) operators and positive
(negative) frequencies. Thus the commutator is

i∆(x − y) = [φ̂+(x), φ̂+(y)] + [φ̂−(x), φ̂−(y)]

+[φ̂+(x), φ̂−(y)] + [φ̂−(x), φ̂+(y)]

(154)

The first two terms always vanish since the φ̂+ operators commute among
themselves and so do the operators φ̂−. Thus, we get

i∆(x − y) = [φ̂+(x), φ̂−(y)] + [φ̂−(x), φ̂+(y)] =

=

∫

dk̄

∫

dk̄′{[â†(~k), â(~k′)] exp
(

−iω(k)x0 + i~k · ~x + iω(k′)y0 − i~k′ · ~y
)

+[â(~k), â†(~k′)] exp
(

iω(k)x0 − i~k · ~x − iω(k′), y0 + i~k′ · ~y
)

}
(155)

where
∫

dk̄ ≡
∫

d3k

(2π)32ω(~k)
(156)

By using the commutation relations, we get

i∆(x − y) =

∫

dk̄ [eiω(~k)(x0−y0)−i~k·(~x−~y) − e−iω(~k)(x0−y0)+i~k·(~x−~y)]

(157)

With the help of the function ǫ(k0), defined by

ǫ(k0) =
k0

|k0| ≡ sign(k0) (158)

we can write ∆(x − y) in the manifestly Lorentz invariant form

i∆(x − y) =

∫

d4k

(2π)3
δ(k2 − m2)ǫ(k0)e−ik·(x−y) (159)

The integrand vanishes unless the mass shell condition k2 − m2 = 0 is
satisfied. Notice that ∆(x − y) satisfies the initial condition

∂0∆|x0=y0
= −δ3(~x − ~y) (160)
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At equal times x0 = y0 the commutator vanishes,

∆(~x − ~y, 0) = 0 (161)

Furthermore, it vanishes if the space-time points x and y are separated by
a space-like interval, (x − y)2 < 0. This must be the case since ∆(x − y)
is manifestly Lorentz invariant. Thus if it vanishes at equal times, where
(x−y)2 = (x0−y0)

2−(~x−~y)2 = (~x−~y2)2 < 0, it must vanish for all events
with the negative values of (x− y)2. This implies that, for events x and y,
which are not causally connected ∆(x− y) = 0 and that ∆(x− y) is non-
zero only for causally connected events, i.e., in the forward light-cone.

time

space

Forward Light Cone

x 2 − t 2

x 2 t 2−

Backward Light Cone

x 2 t 2− x 2 t 2−

<0

<0

>0 >0

Figure 3: The light-cone.

4.5 Symmetries of the Quantum Theory

In our discussion of Classical Field Theory we discovered that the presence of
continuous global symmetries implied the existence of constants of motion. In
addition, the constants of motion were the generators of infinitesimal symmetry
transformations. It is then natural to ask what role do symmetries play in the
quantized theory.
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In the quantized theory all physical quantities are represented by operators
which act on the Hilbert space of states. The classical statement that a quantity
A is conserved if its Poisson Bracket with the Hamiltonian is zero

dA

dt
= {A, H}PB (162)

becomes, in the quantum theory

i
dÂH

dt
= [ÂH , Ĥ ] (163)

and it applies to all operators in the Heisenberg representation. Then, the
constants of motion of the quantum theory are operators which commute with
the Hamiltonian.

Therefore, the quantum theory has a symmetry if and only if the charge Q̂,
which is a Hermitian operator associated with a classically conserved current
jµ(x) via the correspondence principle,

Q̂ =

∫

x0 fixed

d3x ĵ0(~x, x0) (164)

commutes with Ĥ

[Q̂, Ĥ ] = 0 (165)

If this is so, the charges Q̂ constitute a representation of the generators of the Lie
group in the Hilbert space of the theory. The transformations U(α) associated
with the symmetry

U(α) = exp(iαQ̂) (166)

are unitary transformations which act on the Hilbert space of the theory.
For instance, we saw that for a translationally invariant system the classical

energy-momentum four-vector Pµ

Pµ =

∫

x0

d3x T 0µ (167)

is conserved. In the quantum theory P 0 becomes the Hamiltonian operator Ĥ

and P̂ i the total momentum operator. In the case of a free scalar field we saw
before that these operators commute with each other, [P̂ i, Ĥ ] = 0. Thus, the
eigenstates of the system have well defined total energy and total momentum.
Since P j is the generator of infinitesimal translations of the classical theory, it
is easy to check that its equal-time Poisson Bracket with the field φ(x) is

{φ(~x, x0), P
j}PB = ∂j

xφ (168)

In the quantum theory the equivalent statement is that the operators φ̂(x) and
P̂ j satisfy the equal-time commutation relation

[φ̂(x, x0), P̂
j ] = i∂j

xφ̂(~x, x0) (169)
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Consequently, φ̂(xj + aj , x0) and φ̂(xj , x0) are related by

φ̂(xj + aj , x0) = eiaj P̂j φ̂(~x, x0)e
−iaj P̂j (170)

Translation invariance of the ground state |0〉 implies that it is a state with zero
total linear momentum, P̂ j |0〉 = 0. For a finite displacement ~a we get

eiaj P̂ j |0〉 = |0〉 (171)

which states that the state |0〉 is invariant and belongs to a one-dimensional
representation of the group of global translations.

Let us discuss now what happens to global internal symmetries. The simplest
case that we can consider is the free complex scalar field φ(x) whose Lagrangian
L is invariant under global phase transformations. If φ is a complex field, we
can decompose it into its real and imaginary parts

φ =
1√
2
(φ1 + iφ2) (172)

The Classical Lagrangian for a free complex scalar field φ is

L = ∂µφ∗∂µφ − m2φ∗φ (173)

now splits into two independent terms

L(φ) = L(φ1) + L(φ2) (174)

where L(φ1) and L(φ2) are the Lagrangians for the free scalar real fields φ1 and
φ2. The canonical momenta Π(x) and Π∗(x) decompose into

Π(x) =
δL

δ∂0φ
=

1√
2
(φ̇1 − iφ̇2) Π∗(x) =

1√
2
(φ̇1 + iφ̇2) (175)

In the quantum theory the operators φ̂ and φ̂† no longer coincide with each other,
and neither do Π̂ and Π̂†. Still, the canonical quantization procedure tells us
that φ̂ and Π (and φ̂† and Π̂†) satisfy the equal-time canonical commutation
relations

[φ̂(~x, x0), Π̂(~y, x0)] = iδ3(~x − ~y) (176)

The theory of a free complex scalar field is solvable by the same methods that
we used for a real scalar field. Instead of a single creation anihilation algebra
we must introduce now two algebras, with operators â1 and â

†
1, â2 and â

†
2. Let

â(k) and b̂(k) be defined by

â(~k) =
1√
2

(

â1(~k) + iâ2(~k)
)

â†(~k) =
1√
2

(

â
†
1(k) − iâ

†
2(

~k)
)

b̂(~k) =
1√
2

(

â1(~k) − iâ2(~k)
)

b̂†(~k) =
1√
2

(

â
†
1(

~k) + iâ
†
2(

~k)
)

(177)
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which satisfy the algebra

[â(~k), â†(~k′)] = [b̂(~k), b̂†(~k′)] = (2π)32ω(~k) δ3(~k − ~k′) (178)

while all other commutators vanish. The Fourier expansion for the fields now is

φ̂(x) =

∫

d3k

(2π)32ω(~k)

(

â(~k)e−ik·x + b̂†(~k)eik·x
)

φ̂†(x) =

∫

d3k

(2π)32ω(k)

(

b̂(k)e−ik·x + â†(k)eik·x
)

(179)

where ω(~k) =
√

~k2 + m2 and k0 = ω(~k). The normal ordered Hamiltonian is

:Ĥ :=

∫

d3k

(2π)32ω(~k)
ω(~k)

(

â†(~k)â(~k) + b̂†(~k)b̂(~k)
)

(180)

and the total momentum P̂ is

P̂ j =

∫

d3k

(2π)32ω(~k)
kj

(

â†(~k)â(~k) + b̂†(~k)b̂(~k)
)

(181)

we see that there are two types of quanta, a and b. The field φ creates b-quanta
and it destroys a-quanta. The vacuum has no quanta.

The one-particle states have now a two-fold degeneracy since the states
â†(~k)|0〉 and b̂†(~k)|0〉 have one particle of type a and one of type b respectively

but these states have exactly the same energy, ω(~k), and the same momentum
~k. Thus for each value of the energy and of the momentum we have a two
dimensional space of possible states. This degeneracy is a consequence of the
symmetry: the states form multiplets.

What is the quantum operator which generates this symmetry? The classi-
cally conserved current is

jµ = iφ∗∂µ

↔

φ (182)

In the quantum theory jµ becomes the normal-ordered operator : ĵµ :. The

corresponding global charge Q̂ is

Q̂ = :

∫

d3x i
(

φ̂†∂0φ̂ − ∂0φ̂
†φ̂

)

:

=

∫

d3k

(2π)32ω(~k)

(

â†(~k)â(~k) − b̂†(~k)b̂(~k)
)

= N̂a − N̂b

(183)

where N̂a and N̂b are the number operators for quanta of type a and b respec-
tively. Since [Q̂, Ĥ ] = 0, the difference N̂a−N̂b is conserved. Since this property
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is consequence of a symmetry, it is expected to hold in more general theories
than the simple non-interacting case that we are discussing here, provided that
[Q̂, Ĥ ] = 0. Thus, although N̂a and N̂b may not be conserved separately in the
general case, the difference N̂a − N̂b will be conserved if the symmetry is exact.

Let us now briefly discuss how is this symmetry realized in the spectrum of
states. The vacuum state has Na = Nb = 0. Thus, the generator Q̂ anihilates
the vacuum

Q̂|0〉 = 0 (184)

Therefore, the vacuum state is invariant (i.e., a singlet) under the symmetry,

|0〉′ = eiQ̂α|0〉 = |0〉 (185)

Because the state |0〉 is always defined up to an overall phase factor, it spans
a one-dimensional subspace of states which are invariant under the symmetry.
This is the vacuum sector and, for this problem, it is trivial.

There are two linearly-independent one-particle states, |+, ~k〉 and |−, ~k〉 de-
fined by

|+, ~k〉 = â†(~k) |0〉 |−, ~k〉 = b̂†(~k) |0〉 (186)

Both states have the same momentum ~k and energy ω(~k). The Q̂-quantum
numbers of these states, which we will refer to as their charge, are

Q̂|+, ~k〉 = (N̂a − N̂b)â
†(~k)|0 >= N̂a â†(~k)|0〉 = +|+, ~k〉

Q̂|−, ~k〉 = (N̂a − N̂b) b̂†(~k)|0〉 = −|−, ~k〉
(187)

Hence
Q̂|σ,~k〉 = σ |σ,~k〉 (188)

where σ = ±1. Thus, the state â†(~k)|0〉 has positive charge while b̂†(~k)|0〉 has
negative charge. Under a finite transformation U(α) = exp(iαQ̂) they transform
like

|+, ~k〉′ = U(α) |+, ~k〉 = exp(iαQ̂) |+, ~k〉 = eiα |+, ~k〉
|−, ~k〉′ = U(α) |−, ~k〉 = exp(iαQ̂)|−, ~k〉 = e−iα |−, ~k〉

(189)

The field φ̂(x) itself transforms like

φ̂′(x) = exp(−iαQ̂) φ̂(x) exp(iαQ̂) = eiαφ̂(x) (190)

since
[Q̂, φ̂(x)] = −φ̂(x) [Q̂, φ̂†(x)] = φ̂†(x) (191)

Thus the one-particle states are doubly degenerate, and each state transforms
non-trivially under the symmetry group. By inspecting the Fourier expansion
for the complex field φ̂, we see that φ̂ is a sum of two terms: a set of positive
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frequency terms, symbolized by φ̂+, and a set of negative frequency terms, φ̂−.
In this case all positive frequency terms create particles of type b (which carry
negative charge) while the negative frequency terms anihilate particles of type

a (which carry positive charge). The states |±, ~k〉 are commonly referred to as

particles and antiparticles: particles have rest mass m, momentum ~k and charge
+1 while the antiparticles have the same mass and momentum but carry charge
−1. This charge is measured in units of the electromagnetic charge −e (see the
previous discussion on the gauge current).

Let us finally note that this theory contains an additional operator, the
charge conjugation operator Ĉ, which maps particles into antiparticles and vice
versa. This operator commutes with the Hamiltonian, [Ĉ, Ĥ ] = 0. This property
insures that the spectrum is invariant under charge conjugation. In other words,
for every state of charge Q there exists a state with charge−Q, all other quantum
numbers being the same.

Our analysis of the free complex scalar field can be easily extended to systems
which are invariant under a more general symmetry group G. In all cases the
classically conserved charges become operators of the quantum theory. Thus,
there are as many charge operators Q̂a as generators are in the group. The
charge operators represent the generators of the group in the Hilbert (or Fock)
space of the system. The charge operators obey the same commutation relations
as the generators themselves do. A simple generalization of the arguments
that we have used here tell us that the states of the spectrum of the theory
must transform like the (irreducible) representations of the symmetry group.
However, there is one important caveat that should be made. Our discussion
of the free complex scalar field shows us that, in that case, the ground state is
invariant under the symmetry. In general, the only possible invariant state is the
singlet state. All other states are not invariant and transform non-trivially. But,
should the ground state always be invariant? In elementary quantum mechanics
there is a theorem, due to Wigner and Weyl, which states that for a finite

system, the ground state is always a singlet. However, there are many systems
in Nature, such as magnets and many others, which have ground states which
are not invariant under the symmetries of the Hamiltonian. This phenomenon,
known as Spontaneous Symmetry Breaking, does not occur in simple free field
theories but it does happen in non-linear or interacting theories. We will return
to this important question later on.
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